
Лабораторная работа 1. Калькулятор с

дополнительными действиями

Оставьте ссылку на выполненное задание ЛР 1 (ссылка на replit), где необходимо создать еще

несколько действий для вычисления (2-3 действия) с двумя операндами.

Лабораторная работа 2. Калькулятор с

настройками. Ср. квадратическое отклонение

Оставьте ссылку на выполненное задание ЛР 2 (ссылка на replit). Описание - см.

борд: https://moodle.herzen.spb.ru/mod/url/view.php?id=825124

Лабораторная работа 3. Задача two_sum,

two_sum_hashed

Напишите в поле ответа ссылку на собственное решение в repl.it.

Не забудьте указать в коде решения автора и написать тесты

Лабораторная работа 4. Тестирование

Цель работы

Освоить основные принципы модульного тестирования и базовый инструментарий обработки

исключений.

Запись конференции

Код доступа: J6^WHje?

Комментарии по выполнению

Работу можно структурировать на следующие части:

1. Проанализировать ситуации, в которых может возникнуть исключение и

реализовать обработку этих исключительных ситуаций с помощью базового

инструментария, показанного в конспекте курса или по ссылкам (официальная

документация, русско-язычный ресурс и ещё один по обработке исключений).

2. Создать набор тестов для с использованием оператора assert для тестирования

функций two_sum, convert_precision, функции для

вычисления среднеквадратического отклонения, функции calculate. Для этого:

0) проанализировать функции и их ОДЗ, выявить краевые случаи для тестов,

выявить какие-либо еще ситуации, которые не связаны с ОДЗ (например, с

передачей значений некорректного типа данных);

1) создать в repl.it бордах отдельные файлы, начинающиеся со слова "test_" и

содержащие в названии имя тестируемой функции;

2) создать внутри функции (также начинающиеся со слова test_и содержащие в

https://us02web.zoom.us/rec/share/QYhDrhmI9Qqi2RzINfUzJQCV98eIOBn5infhEsF0ZTVqlMecsASV1lhiC7Hk9m9f.8gW6eAJ2GU9MwHVO
https://docs.python.org/3/tutorial/errors.html
https://docs.python.org/3/tutorial/errors.html
https://pythonworld.ru/tipy-dannyx-v-python/isklyucheniya-v-python-konstrukciya-try-except-dlya-obrabotki-isklyuchenij.html
https://pythonist-ru.turbopages.org/pythonist.ru/s/obrabotka-isklyuchenij-v-python-s-ispolzovaniem-instrukczij-try-except-i-finally/

названии описание тестового случая) и использовать в них - assert, написать

проверку ожидаемого результата.

3. Применить принципы модульного тестирования и с использованием библиотеки

unittest (см. пример в repl.it, сайт с официальной документацией и русско-язычный

ресурс по unittest) протестировать возможные варианты работы программы (в том

числе и возникновение исключительных ситуаций) для калькулятора.

4. Документировать функции calculate, convert_precision, load_params с

помощью docstring. Включить в docstring тесты для функций, где это необходимо

(см. пример и документацию).

5. Отрефакторить код таким образом, чтобы программа работала максимально

стабильно, реагировала адекватно на ввод некорректных значений.

Опишем конкретные аспекты наиболее трудных заданий подробнее.

1. Анализ мест в коде с исключительными ситуациями

Исключительная ситуация может возникнуть на этапе работы с файлом (чтение, запись),

обработки аргументов, вводимых пользователем, вычисления математических действий внутри

функции calculate. Эти ситуации мы можем обработать с помощью блока (см. рабочий пример в

стартовом борде):

try

 pass # какое-то выражение, возможно, поднимающее исключение

except Exception:

 print('Исключение возникло') # обработка исключения

else:

 # блок, выполняющийся, если исключения не было

2. Модульное тестирование с unitest

Шаблон для тестирования с помощью unittest может выглядеть так:

import unittest

class TestSomeFunc(unittest.TestCase): # создаем свой класс для тестов

 def firsttestcase(self): # внутри функции один или несколько тестовых

 self.assertEqual(2*2, 4) # случаев, которые проверяют какие-то

 # близкие предположения

https://docs.python.org/3/library/unittest.html
https://pythonworld.ru/moduli/modul-unittest.html
https://pythonworld.ru/moduli/modul-unittest.html
https://habr.com/ru/post/499358/
https://replit.com/@zhukov/doctest-precision#main.py
https://docs.python.org/3/library/doctest.html
https://ru.wikipedia.org/wiki/%D0%A0%D0%B5%D1%84%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%BD%D0%B3

 # ...

 def secondtestcase(self): # вторая группа тестов

 pass

unittest.main(verbosity=1) # запуск тестов

Пример тестирования двух функций convert_precision и two_sum, которую мы создавали ранее.

Нюанс тестирования в repl.it и PyCharm. В repl.it тесты запускаются вручную с помощью вкладки

Shell (справа) (пример борда), в PyCharm требуется закомментировать запуск тестов с помощью:

unittest.main(verbosity=1)

3. Документирование docstring

Документирование - важный этап при написании программы почти любого масштаба.

Документирование в Python осуществляется помимо обычных комментариев с помощью

указания т.н. docstring с помощью многострочного варианта строки внутри функции. Приведем

docstring для функций convert_precision. В приведенном примере сначала пишется краткое

описание того, что делает функция, потом идут два примера вызова, которые также являются и

тестами.

Лабораторная работа 5

Цель работы

Научиться считывать и записывать значения из файла и усовершенствовать калькулятор таким

образом, чтобы было возможно конфигурировать его настройки (PARAMS) посредством файла, а

также сохранять историю действий пользователя в файл.

Комментарии по выполнению

Работу можно разбить на две части:

1. Реализация функции загрузки параметров работы калькулятора из файла.

2. Реализация функции записи истории действий пользователя в файл.

Опишем каждую из них подробнее.

1. Реализация функции загрузки параметров работы калькулятора из файла

https://repl.it/@zhukov/unittest-precision#main.py
https://repl.it/@zhukov/unittest-twosum#main.py
https://repl.it/@zhukov/unittest-precision-1#test_precision.py
https://repl.it/@zhukov/unittest-precision#main.py

Эта функция подразумевает, что мы создадим вручную файл (допустим, params.ini) и напишем

функцию, которая позволит считывать из него данные и присваивать считанные значения

глобальной переменной PARAMS, объявленной в коде

def load_params(file="params.ini"):

 global PARAMS

 f = open(file, mode='r', errors='ignore')

 lines = f.readlines()

 for l in lines:

 print(l)

2. Реализация функции записи истории действий пользователя в файл

Пример работы программы

def write_log(file='calc-history.log.txt'):

 pass

Стартовый борд в repl.it

Лабораторная работа 6

Цель работы

Усовершенствовать приложение с калькулятором таким образом, чтобы оно позволяло:

выводить в красивом виде результаты вычисления операций на экран.

Комментарии по выполнению

Необходимо написать дополнительную функцию print_results таким образом, чтобы

результаты вычисления выводились в "табличном" виде, границы таблицы оформляются с

помощью символов -, *, = . Вывод должен быть организован в таком виде, чтобы таблица

"подстраивалась" под любые введенные значения.

Пример №1

* A * B * A + B *

* 1234 * 12345 * 13579 *

https://repl.it/@zhukov/LR-8

Пример №2

* A * B * A x B *

* 2 * 5 * 10 *

Лабораторная работа 7. Тестирование unittest

Цель работы

Освоить принципы использования механизма обработки исключительных ситуаций при

считывании/записи в файл на примере функции для сохранения лога операций и чтения

настроек для работы калькулятора из файла.

Стартовый борд для задания

Комментарии по выполнению

Работу можно структурировать на следующие части:

1. Проанализировать ситуации работы с файлом, в которых может возникнуть

исключение и реализовать обработку этих исключительных ситуаций с помощью

базового инструментария, показанного в конспекте курса или по ссылкам

(официальная документация, русско-язычный ресурс и ещё один по обработке

исключений).

2. Применить принципы модульного тестирования и с использованием библиотеки

unittest (см. пример в repl.it, сайт с официальной документацией и русско-язычный

ресурс по unittest) протестировать возможные варианты работы программы по

работе с файлом. Обратить внимание на возникновение исключительных ситуаций

в этих операциях. Выделить ситуации при которых необходимо вручную поднять

определенное исключение.

3. В стартовом борде рассмотрен способ тестирования поднятия исключения в случае,

когда мы не используем специальных библиотек для считывания/записи в файл.

Вам же нужно протестировать срабатывание исключений при использовании

библиотек configparser (для чтения) и csv (для записи) файлов.

Опишем конкретные аспекты задания ниже.

1. Анализ мест в коде с исключительными ситуациями

Исключительная ситуация может возникнуть на этапе работы с файлом (чтение, запись).

Программа может не считать файл с настройками например, из-за ограниченного набора прав

https://replit.com/@zhukov/InsignificantSparseDecimal#main.py
https://docs.python.org/3/tutorial/errors.html
https://pythonworld.ru/tipy-dannyx-v-python/isklyucheniya-v-python-konstrukciya-try-except-dlya-obrabotki-isklyuchenij.html
https://pythonist-ru.turbopages.org/pythonist.ru/s/obrabotka-isklyuchenij-v-python-s-ispolzovaniem-instrukczij-try-except-i-finally/
https://docs.python.org/3/library/unittest.html
https://pythonworld.ru/moduli/modul-unittest.html
https://pythonworld.ru/moduli/modul-unittest.html

пользователя, запустившего данную программу или каких-либо настроек других ОС. Эти

ситуации мы можем обработать с помощью блока (см. рабочий пример в стартовом борде):

try

 pass # какое-то выражение, возможно, поднимающее исключение

except Exception:

 print('Исключение возникло') # обработка исключения

else:

 # блок, выполняющийся, если исключения не было

2. Модульное тестирование с unitest

Шаблон для тестирования с помощью unittest может выглядеть так:

import unittest

class TestSomeFunc(unittest.TestCase): # создаем свой класс для тестов

 def firsttestcase(self): # внутри функции один или несколько тестовых

 self.assertEqual(2*2, 4) # случаев, которые проверяют какие-то

 # близкие предположения

 # ...

 def secondtestcase(self): # вторая группа тестов

 pass

unittest.main(verbosity=1) # запуск тестов

Пример тестирования двух функций convert_precision и two_sum, которую мы создавали ранее.

Нюанс тестирования в repl.it и PyCharm. В repl.it тесты запускаются вручную с помощью вкладки

Shell (справа) (пример борда), в PyCharm требуется закомментировать запуск тестов с помощью:

https://repl.it/@zhukov/unittest-precision#main.py
https://repl.it/@zhukov/unittest-twosum#main.py
https://repl.it/@zhukov/unittest-precision-1#test_precision.py

Unittest.main(verbosity=1)

В итоге должна получиться полноценная

программа «Калькулятор», собранная в одном

репозитории

