
ЛР 1. Численное интегрирование
Формулировка задания указана по ссылке: https://replit.com/@zhukov/prog7-t1-lr1?v=1

Сделайте форк данного борда, напишите код, позволяющий решить задачу и

представьте ссылку в качестве ответа на данное задание.

Написание программы для численного интегрирования площади под кривой.

def integrate(f, a, b, *, n_iter=1000):

 print(n_iter)

или можно так:

def integrate2(f, a, b, n_iter=1000):

 print(n_iter)

Для вызова функций в первом и во втором случаях доступны следующие способы:

integrate(math.sin, 0, 1, n_iter=100)

иначе аргумент n_iter не передать, неявно (как ниже) - не получится

integrate2(math.cos, 0, 1, 100) # или integrate2(math.cos, 0, 1, n_iter=100)

Оценить скорость выполнения интегрирования с помощью модуля timeit при

количестве итерацией n_iter = 10**4, 10**5, 10**6 для какой-либо функции (в качестве

функции предлагается sin, cos, или tg).

Для борда выше:

Существует два способа вызвать timeit для оценки времени для n_iter=1000

собственно внутри кода:

timeit.timeit("integrate(lambda x: x+1, 0, 1, n_iter=1000)",

 setup="from integrate import integrate")

или из командной строки:

>>>python -m timeit -s "from integrate import integrate"
 "integrate(lambda x: x+1, 0, 1, n_iter=1000)"

Для импорта нескольких библиотек после ключа -s указываем импорты через ";" т.е.

например, для импорта функции sin -s "from integrate import integrate; from math

import sin"

https://replit.com/@zhukov/prog7-t1-lr1?v=1

Если будете использовать Jupyter Notebook:

%%timeit -n100

integrate(math.atan, 0, math.pi / 2, n_iter=10**5)

integrate(math.atan, 0, math.pi / 2, n_iter=10**6)

Если будете делать это в обычной среде, то см документацию.

Например, можно в режиме REPL или из командной строки (см. примеры):

>>> import timeit

>>> timeit.timeit('"-".join(str(n) for n in range(100))', number=10000)

ЛР 2. Численное интегрирование. Оптимизация
Дополните файл с кодом функции integrate следующим кодом, расположенном

по ссылке (или тут) и также проведите замеры времени вычисления для аналогичных

параметров модуля timeit для кратного числа потоков и процессов (2, 4, 6). Замеры вычислений —

только для количества итераций n_iter=10**6:

integrate(math.atan, 0, math.pi / 2, n_iter=10**6)

Дополните этой информацией отчёт.

Количество повторений / repeat — 100, единицы измерения — msec. Ссылку на борд

с кодом с комментариями на Python в repl.it приведите как ответ на это задание.

ЛР 3. Численное интегрирование. Cython, потоки,

joblib
Перепишите функцию integrate с использованием Cython (см. документацию). Можно подумать о

следующих вариантах оптимизации:

• объявите переменные с фиксированным типом данных;

• используйте конструкцию nogil (см. пример);

• используйте более быстрые Си-реализации известных мат. функций;

• используйте другой range.

https://docs.python.org/3/library/timeit.html#python-interface
https://docs.python.org/3/library/timeit.html#examples
https://replit.com/@zhukov/sem7-task3#main.py
https://replit.com/@zhukov/prog7-t1-lr2#main.py
https://replit.com/@zhukov/sem7-task3#main.py
https://docs.cython.org/en/latest/src/quickstart/index.html
https://docs.cython.org/en/latest/src/userguide/parallelism.html?highlight=nogil#using-parallelism

Снова проведите замеры без потоков (аналогично предыдущим заданиям, для

n_iter=10**5 и n_iter=10**6) и с потоками, процессами (аналогично для n_iter=10**6):

2, 4, 6. Зафиксируйте замеры.

Перепишите функцию integrate_async из ЛР 2 через Parallel из модуля joblib

(см. документацию и пример) и снова сделайте замеры. Изменилось ли что-то?

Отчет в виде Jupyter Notebook или кода с комментариями на Python в GitHub

приведите как ответ на это задание.

ЛР 4. Парсинг сайта herzen.spb.ru
Образец борда со стартовым кодом

Спарсить страницу https://www.herzen.spb.ru/main/structure/inst/ и создать json-файл

со списком институтов, где структура файла будет такой:

[{"institute_name":"", "url": "", "dep_list":

 [

 {"dep_name": "кафедра", "head_name":"имя", "email":"почта"},

 ...

]},
 ...
]

дополнить файл с данными, организовав парсинг страниц институтов на сайте

https://atlas.herzen.spb.ru/faculty.php. Спарсить список кафедр этого института и

дополнить файл информацией о руководителях кафедр этого института: имя и почта.

В качестве ответа приведите ссылку на Google Colab с кодом решения.

Базовый код:

from urllib.request import urlopen
from bs4 import BeautifulSoup
html = urlopen('https://www.herzen.spb.ru/main/structure/inst/')
bs = BeautifulSoup(html, "html.parser")
nameList = bs.find('td',{'class':'block'}).children

nameList = bs.findAll('td', {'class': 'block'})
for i in range(10) # for (let i=0; i < 10; i++) {}
for name in nameList:
print(name.get_text())
for child in nameList:
 print(child)

https://joblib.readthedocs.io/en/latest/generated/joblib.Parallel.html
https://replit.com/@zhukov/prog7-t1-lr3#main.py
https://colab.research.google.com/drive/1BfSA7upBT-X0h_uzvdUVPtvuY9uzhClW?usp=sharing
https://www.herzen.spb.ru/main/structure/inst/

Лабораторная работа 5
Дан Gist с текстом статьи сэра Тима Бернерса-Ли, оригинал

тут: https://www.w3.org/DesignIssues/TimBook-old/History.html

Необходимо с использованием библиотеки nltk решить задачу частеречной

разметки и найти 5 (пять) наиболее встречаемых частей речи в этом тексте.

В качестве ответа необходимо представить ссылку на Google Colab или на

репозиторий GitHub (обозначьте ответы в README.md), в которой будет

располагаться файл (ipynb или py) с выводом списка с обозначениями частей речи и

количеством их в тексте.

Например:

1. Имя существительное - 123

2. Предлог - 456

3. Прилагательное - 789

4. Междометие - 89

5. Наречие - 42

Подсказка по алгоритму решешиня задачи:

1. Получить текст с помощью requests или urllib.request.

2. Преобразовать в utf-8.

3. Найти функцию для решения частеречной разметки.

4. Не забыть провести токенизацию текста перед разметкой.

5. Определить топ-5 частей речи и найти вывести их на экран в понятном виде.

6. В комментарии внутри борда отмечено какие части речи нам необходимо

дополнительно вывести на экран, подсчитав количество встреченных и

размеченных этими частями речи слов в тексте (обратите внимание на те

части речи, которые нам нужно сложить).

Замечание 1

При работе в коллабе может потребоваться установить некоторые дополнения к nltk

для получения ответа.

Например, автору задания потребовалось выполнить следующие команды:

nltk.download('punkt')

nltk.download('averaged_perceptron_tagger')

Стартовый борд для задания: https://replit.com/@zhukov/prog7-t2-lz6#main.py

https://gist.githubusercontent.com/nzhukov/b66c831ea88b4e5c4a044c952fb3e1ae/raw/7935e52297e2e85933e41d1fd16ed529f1e689f5/A%2520Brief%2520History%2520of%2520the%2520Web.txt
https://www.w3.org/DesignIssues/TimBook-old/History.html
https://en.wikipedia.org/wiki/Part-of-speech_tagging
https://en.wikipedia.org/wiki/Part-of-speech_tagging
https://replit.com/@zhukov/prog7-t2-lz6#main.py

ЛР 6. Обработка текста на Python / NLP with Python
Спарсить страницу https://www.herzen.spb.ru/main/news/ и с использованием

регулярных выражений сохранить все ссылки на новости, расположенные на этой

странице.

Открыть каждую сохраненную страницу и спарсить основное содержимое новости

Обработать текст и сохранить для каждой новости:

1. Ключевые термины.

2. Ключевых персонажей, упоминавшихся в новости.

3. Построить изображение с облаком тегов для извлеченных ключевых терминов и

персонажей.

В качестве ответа приведите ссылку на Google Colab с кодом решения.

Для обработки текста использовать библиотеку natasha. (см. пример).

Для построения облака тегов использовать библиотеку wordcloud (см. пример)

ЛР 7. Счетчик (Flask) в Docker
На основе борда https://replit.com/@zhukov/prog7-t3-lr7#simpleapp.py реализуйте

flask-приложение "Счетчик" со следующим функционалом:

• по адресу localhost:port/stat - происходит инкремент счетчика и

возвращается текущее его значение в виде html-содержимого;

• по адресу localhost:port/about - вызывается функция hello, написанная в

борде в текущей версии с добавлением имени и фамилии студента,

выполнившего задание;

Счетчик инициализируется при запуске приложения и его значение хранится в

переменной, не сохраняется, если приложение было остановлено.

"Упакуйте" приложение в докер-контейнейнер (в качестве основного образа

используйте alpine-версию образа python) и опубликуйте в docker hub.

В ответе предоставьте ссылку на реплит с работающим приложением и на страницу

приложения в докерхаб.

ЛР 8
Просмотрите ролик данной темы и выполните задание озвученное в конце ролика.

Соответствующий ролику борд с кодом расположен по ссылке:

https://replit.com/@zhukov/prog7-t3-lr8#Dockerfile

https://www.herzen.spb.ru/main/news/
https://colab.research.google.com/drive/1EZ5QcBJGmnG7A7ZZ_ZFonwzb8R5nHQO6?usp=sharing#scrollTo=hJmk1MKDdsAA
https://colab.research.google.com/drive/1EZ5QcBJGmnG7A7ZZ_ZFonwzb8R5nHQO6?usp=sharing#scrollTo=hJmk1MKDdsAA
https://replit.com/@zhukov/prog7-t3-lr7#simpleapp.py
https://replit.com/@zhukov/prog7-t3-lr8#Dockerfile

Отчет по заданию представьте в виде:

• ссылки на борд в replit с кодом;

• ссылки на образ в Docker Hub, разместите в README.md в репозитории код

Dockerfile для создания образа или образов, которые участвуют в создании

приложения, инструкцию для развертывания приложения.

Итоговое групповое задание по дисциплине
Цель: реализовать полностью процесс развертывания какого-либо веб-приложения,

созданного в рамках дисциплины "Программирование" с использованием

методологии DevOps (CI/CD).

Для этого:

1. Выбрать какое-либо приложение (например, приложение для получения

курсов валют; приложение, созданное в рамках ЛР 8 или какое-то другое

приложение).

2. Выбрать какую-либо платформу для реализации DevOps (по умолчанию,

GitHub или GitLab).

3. Внутри группы распределить отдельные этапы, реализуемые в рамках

методологии DevOps, на всех участников.

Например, участник 1 — берет на себя CI и в нем юнит-тестирование, а

участник 2 — линтинг и валидацию кода / статический анализ кода,

участник 3 — берет развертывание кода в продакшен и т.д.

4. Каждый участник формирует конкретный сценарий выполнения этого

этапа с использованием выбранного (на этапе 2) инструмента сборки.

5. Объединить все этапы в общий сценарий и продемонстрировать любым

образом процесс сборки.

В качестве ответа на задания представить ссылку на общий репозиторий с файлом

README.md, где будет описан процесс сборки и каждый из этапов, реализованных

участниками группы.

